
SPL Implementation Guide with Validation Procedures v1

 299

34 Chemical Reactions

Reaction data elements can be included in any document of any document type that
allows it. Common document scenarios where reactions occur may be

 Laboratory notebook entry
 Research article
 Reaction database entry
 Patent disclosure
 Manufacturing planning and specification

Specific such use cases would define specific document types with their own
document code and constraints as to the sections and other data elements.

This implementation guide section defines how the SPL data elements are used to
represent chemical reactions and related information in general from a general
chemical and logical perspective, it does not specify a lot of constraints and
conformance criteria for specific limited use cases beyond what is logically sensible.
For example, if an organization was to use reaction SPL to catalog reactions they
would likely require some minimum data elements and on the other hand limit the
expressivity to only the features that that organization is interested in.

34.1 Recapitulating Documents and Sections

For general guide about the use of the document and section XML structure, see the
implementation guide Section 2. The following is an example of the start of a
document that carries reactions:

<document xmlns="urn:hl7-org:v3"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:hl7-org:v3
 https://www.accessdata.fda.gov/spl/schema/spl.xsd">
 <id root="6ef20731-e18a-4f16-b952-6e0bc95f5931"/>
 <code code="C47902" codeSystem="1.3.6.1.4.1.32366.1.1"
 displayName="Article"/>
 <title>A New Method of Synthesizing Gold from Mercury</title>
 <effectiveTime value="20211016220549"/>
 <setId root="c5b792f0-f5b0-47e8-b4eb-c2a4bddcbc38"/>
 <versionNumber value="1"/>

Documents have a document (version) set id and an integer version number, and a
document (version) id. The set id is the id of a set of document versions, the
document id or document version id changes every time a new document version is
created. These ids are UUIDs (also called GUIDs) and are presented in lower case
(not upper case and not case-insensitive).

The document effective time is generally the date (and time) this document becomes
“effective”, this is usuall the time it is finalized and released. This uses the timestamp

 34 Chemical Reactions

 300

(TS) data type which is in the form “YYYYMMDD[HH[MM[SS[.FFF*]]]”, with at
least the precision of day (“DD”) and optional hour (“HH”), minute (“MM”), second
(“SS”) and if desired any fractional seconds. This is a constrained version of the ISO
date and time format without any delimites like dashes, colons and the “T” between
date and time.

The example continues with author, of which there may be one or more, which might
be a person and the primary organization to which they are affiliated in their
authorship, or only the organization if it specifications or database entries published
where the individual authors are not disclosed:

 <author>
 <assignedEntity>
 <assignedPerson>
 <name>Jean Baptista van Helmont</name>
 </assignedPerson>
 <representedOrganization>
 <name>University of Leuven</name>
 </representedOrganization>
 </assignedEntity>
 </author>

Then comes the body of the document. A document has one body, which contains the
toplevel sections:

 <component>
 <structuredBody>
 <component>
 <section>
 <id root="211b8a92-efd3-4c6c-8622-46082d921b7d"/>
 <code code="C0600678" codeSystem="1.3.6.1.4.1.32366.1.1"
 displayName="Abstract"/>
 <title>Abstract</title>
 <text>Lorem ipsum …</text>
 <effectiveTime value="20211016220549"/>

There can be any nesting of sections down to any level.

 <section>
 <id root="211b8a92-efd3-4c6c-8622-46082d921b7d"/>
 <code code="C0600678" codeSystem="1.3.6.1.4.1.32366.1.1"
 displayName="Abstract"/>
 <title>Abstract</title>
 <text>Lorem ipsum …</text>
 <effectiveTime value="20211016220549"/>

 <component>
 <section>
 <id root="3451b8a92-efd3-4c6c-8622-46082d921b7d"/>
 <title>Introduction</title>
 <text>Lorem ipsum …</text>

Section codes are optional. If a document template with standardized sections exist,
their codes can be used. If the sub-section type is unspecified, then no code element
needs to be included.

SPL Implementation Guide with Validation Procedures v1

 301

Any time there is a heading, there is a section, and the heading becomes the title and
the body becomes the text and optional further nested sub-sections.

34.2 Basic Chemical Reaction Structure

A chemical reaction structure can be placed under any section:

<section>
 <id .../>
 <code .../>
 <title>...</title>
 <text>...</text>
 <effectiveTime value="..."/>
 <subject2>
 <specification>
 <code nullFlavor="NI"/>
 <component>
 <processStep>

<subject2> is simply the tag for the subject of the section. There are different kinds
of subjects, and chemical reactions would appear as “<subject2>”. Notice that
chemical substances (see implementation guide Section 14) are under a tag names
<subject>, without the “2” at the end. There is no other special meaning of this “2”
and there is no <subject1> nor a <subject3> tag.

<specification> exist because of the context in which this schema was first
developed, i.e., as detailed manufacturing processes under a detailed specification of
a manufactured compound. It turns out that this structure is wholly suitable to
describe reaction schemas as it is to describe reaction processed reduced into practice
and elaborated further. At this point, just cut through this specification layer, and
provide the code with this nullFlavor=“NI” as simply hard coded structure. The
<component> of the <specification> is the reaction, represented by the tag
<processStep>.

<processStep> is what represents any reaction. It is called process step from it’s
origin in manufacturing specifications, and any process step that changes any
molecules is ultimately a chemical reaction. There is a continuum between stating a
reaction schema and stating a very specific process with specific vessels, reactors,
reagents, temperature, pressure, kinetic characteristics, equilibrium constants, reaction
enthalpies, etc. All of that can be expressed in as much detail as required, and it is all
done under this <processStep> tag.

The tag is called process step, because any process can be thought of as one step, or it
can be decomposed into multiple steps. It could have just be called <process> but
process step emphasizes this composability (and de-composability). See more about
this in the subsection 34.4 Multi-Step further below.

 34 Chemical Reactions

 302

34.3 Reaction Participants – Interactors

A chemical reaction equation notation contains inputs (reactants), outputs (products),
and catalysts and solvents and reagents that remain unchanged in the reaction. Here is
an example of two reactants and one product:

<processStep>
 <interactor typeCode="CSM">
 <functionCode code="reactant" codeSystem="1.3.6.1.4.1.32366.1.1"/>
 <identifiedSubstance>
 ... substance definition elements molfile, InChI, etc. ...
 </identifiedSubstance>
 </interactor>
 <interactor typeCode="CSM">
 <functionCode code="reactant" codeSystem="1.3.6.1.4.1.32366.1.1"/>
 ...
 </interactor>
 <interactor typeCode="PRD">
 <functionCode code="product" codeSystem="1.3.6.1.4.1.32366.1.1"/>
 ...
 </interactor>
</processStep>

Reactants and reagents are specified with interactor participations elements of
typeCode “consumable” (CSM). A functionCode can further say what some people
call “role” in the reaction, such as “substrate” vs. “other reactant”.

Products are specified with the interactor participations elements of typeCode
“product” (PRD). A functionCode can label the main intended product vs. waste
products (if they are even specified to balance the reaction.)

Any other agents in the reactions (that are typically written above or below the arrow,
including catalysts and solvents, are specified with the interactor participations
elements of typeCode “catalyst” (CAT), even if, in the case of a solvent, we would
not consider that a “catalyst” (although, generally speaking, it is). Again, the
functionCode can be used with domain specific terminology to say “catalyst” in the
narrower sense vs. “solvent”, or any other more specific designation. In practical
terms, one can think of typeCode values as:

 CSM - left side of arrow
 PRD - right side of arrow
 CAT - above and below the arrow
 DIR - intermediate structures

The classCode “DIR” stands for “direct participant”, i.e., a thing that is directly
physically involved in some way, but in this case not specified whether it is input or
product or catalyst.)

Now the <identifiedSubstance> elements can be specified fully using the substance
specification in the SPL implementation guide Section 14 on “Substance Indexing”.

SPL Implementation Guide with Validation Procedures v1

 303

This allows capturing a huge range of substances from small molecules all the way to
complex hybrid bio-macromolecules. Here, for example, is pyruvate as a reactant:

<processStep>
 <interactor typeCode="CSM">
 <identifiedSubstance>
 <id extension="PYR" root="6ef20731-e18a-4f16-b952-6e0bc95f5931"/>
 <identifiedSubstance>
 <code code="PYR"
 codeSystem="6ef20731-e18a-4f16-b952-6e0bc95f5931"/>
 <name>pyruvate</name>
 <moiety>
 <partMoiety/>

 <subjectOf>
 <characteristic>
 <code code="C103240" displayName="Chemical Structure"
 codeSystem="2.16.840.1.113883.3.26.1.1"/>
 <value xsi:type="ED"
 mediaType="application/x-mdl-molfile"><![CDATA[
 GS-rxn2rspl

 6 5 0 0 0 0 999 V2000
 4.5981 -0.2500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
 3.7320 0.2500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
 2.8660 -0.2500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
 3.7320 1.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0
 2.0000 0.2500 0.0000 O 0 5 0 0 0 0 0 0 0 0 0 0
 2.8660 -1.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0
 1 2 1 0 0 0 0
 2 3 1 0 0 0 0
 2 4 2 0 0 0 0
 3 5 1 0 0 0 0
 3 6 2 0 0 0 0
M CHG 1 5 -1
M END
]]></value>
 </characteristic>
 </subjectOf>

 <subjectOf>
 <characteristic>
 <code code="C103240" displayName="Chemical Structure"
 codeSystem="2.16.840.1.113883.3.26.1.1" />
 <value xsi:type="ED"
 mediaType="application/x-inchi"
 >InChI=1S/C3H4O3/c1-2(4)3(5)6/h1H3,(H,5,6)/p-1</value>
 </characteristic>
 </subjectOf>

See the substance indexing specification for details. But in the above example we can
see molfiles and InChI both being used for specifying the pyruvate.

Since writing out the substances fully defined with all details is costly, one can write
them out once and refer to them by a simple document-internal identifier scheme:

 <identifiedSubstance>
 <id extension="PYR" root="Document ID"/>
 <identifiedSubstance>
 <code code="PYR" codeSystem="Document ID"/>
 <name>pyruvate</name>

 34 Chemical Reactions

 304

Here we have defined the symbol “PYR” in the local “namespace” identified by the
present document’s id. And this has occurred twice. This seems to be a redundancy,
as redundant indeed as having two tags <identifiedSubstance> nested one inside the
other. The reason for this is in the underlying generic data model, in which Act
objects (here, reaction) have multiple participants (here, the interactors), which link
not directly to an entity (here, the substance entity, represented by the inner
<identifiedSubstance> tag), but through a Role, which in turn connects a player and a
scoper, but might only have a player.

The best example for Act – Participation – Role – (player + scoper) Entity is seen
around the <author> tag of the <document>. The <document> is conceptualized as an
Act (yes, because it is not the physical embodiment of a copy of that document which
defines the document, but the information content, or communication which it
conveys. A document is therefore an Act, also known as “Speech Act”). The
<author> is a Participation of the <document> Act (other participations might be
<verifier> or <legalAuthenticator>). Then that Participation links the Act with a Role,
here <assignedEntity> which has both an <assignedPerson> player of the Role, and a
<representedOrganization> scoper of that Role. The meaning of <assignedEntity> is
any association, employee, contractor, or agent relationship of the player Entity (here,
an individual Person) with a scoper (here, an Organization).

Other examples of this Act – Participation – Role – (player + scoper) Entity is the
transportation (Act) of a payload (Participation) which is a chemical (player)
contained in (Role) a vessel (scoper). This pattern of the general model underlies all
nesting of the tags. And when in any particular case the scoper of a Role is not of
special interest, therefore omitted, it can appear as if the Entity (here
<identifiedSubstance>) is unnecessarily wrapped inside a Role (here also named
<identifiedSubstance>). The reason those two are named the same thing is a
coincidence of the type of Role being an “identified entity” with an identifying scoper
and an identified player Entity called “Substance”. The Role player and scoper tag-
names are formed based on the Role classCode (here IDENT) and it’s standard
naming patterns, that includes the prefix “identified” before the name of the Entity
class, “Substance” leading to “itentifiedSubstance”.

Finally the duplication of the “PYR” symbol as an id of the Role as well as a “code”
of the Substance, is handy, because in all future references to the PYR participant, we
can simply include only the outer <identifiedSubstance> tag with the <id> as follows:

<processStep>
 ...
 <interactor typeCode="PRD">
 <identifiedSubstance>
 <id extension="PYR" root="6ef20731-e18a-4f16-b952-6e0bc95f5931"/>
 </identifiedSubstance>
 </interactor>

That “PYR” is also defined as a Substance <code> is for a different purpose, where
we may want to refer to the Substance Entity and connect it to a different Role, such
as the generalization – specialization (is-a) Role or a part – whole Role.

SPL Implementation Guide with Validation Procedures v1

 305

In summary, the reacting substances can be specified in full detail, but also labeled
and then re-used by their label.

This might suggest that document authors, and possibly those who define more
constrained reaction document templates, might suggest that all substances used in
the document shall be specified in separate sections, a materials list, and the reaction
or process description sections shall refer to these substancees only by their labels
given in those sections. There is no need to first define the substance labels and then
use them, but “forward references” are completely fine.

For example, a reasonable document collection for a manual of standard practical
reaction to obtain all sorts of substances, might use a standard style guide, where it is
stipulated that the first section shall describe the product in detail, then a second
section the source materials, and then the reaction and process description, only
followed in the end, by a “Reagents, Solvents and Catalyst” section.

Another use of reaction documents might decree that common substances may be
referred to by some well defined code system. Such as the FDA’s UNII code system,
or the Enzyme Commission EC numbers, or the Chemical Entities of Biological
Interest (ChEBI) identifiers, or any other which the community exchanging those
documents deem a well-known code system. In that case the identifiedSubstances
might be given only by reference. For example, here we do not need to specify the
structure of pyruvic acid, but we refer to the FDA substance registration system’s
(and substance indexing SPL file) with the UNII code “8558G7RUTR”:

 <identifiedSubstance>
 <id extension="PYR" root="Document ID"/>
 <identifiedSubstance>
 <code code="8558G7RUTR" codeSystem="2.16.840.1.113883.4.9"/>
 <name>pyruvic acid</name>

We are still also giving the label “PYR”, so this is a good example to show why this
apparent “duplication” of this outer <identifiedSubstance> Role <id> and the inner
<identifiedSubstance> Entity <code> is sometimes (and perhaps very often) quite
useful.

There are even cases where the complete structure of a substance is not known yet,
such as in Orphan Enzymes Project [orphanenzymes.org] where the structure of the
hydroxypyruvate decarboxylase (EC 4.1.1.40) is listed as unknown. To describe the
hydroxypyruvate decarboxylase reaction in reaction-SPL, we therefore need to refer
to the catalyst only by EC number and giving a local label:

 <identifiedSubstance>
 <id extension="PYR-OH-deCOOH" root="Document ID"/>
 <identifiedSubstance>
 <code code="4.1.1.40" codeSystem="1.3.6.1.4.1.32366.1.1.24"/>
 <name>hydroxypyruvate decarboxylase</name>

 34 Chemical Reactions

 306

34.4 Multi-Step Reactions

From the basic reaction building blocks we can build complex multi-step reactions.
This can often make sense in the case of multi-step reaction schemas, but is even
more relevant when these reaction schemas are reduced into practice and detailed
instructions of how to carry out this reaction are provided.

The following example is a 3 step process whereby the second step has multiple sub-
steps that occur in parallel:

<processStep>
 ...
 <component>
 <sequenceNumber value="1"/>
 <processStep .../>
 </component>
 <component>
 <sequenceNumber value="2"/>
 <processStep>
 ...
 <component>
 <sequenceNumber value="1"/>
 <processStep .../>
 </component>
 <component>
 <sequenceNumber value="1"/>
 <processStep .../>
 </component>
 </processStep>
 </component>
 <component>
 <sequenceNumber value="1"/>
 <processStep .../>
 </component>
</processStep>

When the sequenceNumber is increasing, that means the sub-processes are executed
in that sequence. When two sequence numbers are equal, that means they may be
performed in parallel.

There are many additional features to control process steps in the HL7 Reference
Information Model underlying the SPL schema, including repeated execution of a
sequence of steps (e.g., wash and rinse cycles) as well as conditionals and controls of
how parallel processes get spawned and joined together. All these features are already
defined and can easily be brought into the SPL schema either by future versions of
SPL ratified through the HL7 process, or by a fork of the present SPL schema
maintained by the community interested in utilizing these functions. Fortunately, for a
specification of multi-step reactions schemas this enhancement of the SPL schema is
not necessary.

SPL Implementation Guide with Validation Procedures v1

 307

34.5 Process Step Types and Control Variables

To specify laboratory process steps not only input and output substances and reagents
need to be specified but also the actions performed on them. And then actions may
have different parameters, such as temperature, pressure, and other conditions and
settings. The following example specifies stirring while maintaining the temperature
of the system between 100 °C and 110 °C:

<processStep>
 <code code="stir" codeSystem="1.3.6.1.4.1.32366.1.1.997"
displayName="stir"/>
 <text>stir at 100 to 110℃ for 4 hours</text>
 <effectiveTime>
 <width value="4" unit="h"/>
 </effectiveTime>
 <controlVariable>
 <observation>
 <code code="temperature" codeSystem="1.3.6.1.4.1.32366.1.1.998"
 displayName="temperature"/>
 <value xsi:type="IVL_PQ">
 <low value="100" unit="Cel"/>
 <high value="110" unit="Cel"/>
 </value>
 </observation>
 </controlVariable>
</processStep>

These activity and system codes have not all been specified, but a code system OID
has been set aside where these codes are specified symbolically. Implementers should
make a list of English words that concisely define the action, and this list can be
compiled and provided with definitions, and then harmonized should there be any
conflicts occurring.

Table 17: Laboratory Process Steps (gleaned from XDL)

Code Description Participations Parameters Control
Variables

transfer Move contents from
one vessel into
another

subject

source vessel

destination vessel

effectiveTime duration
(fast, slowly)

stir Agitate a dispersion subject vessel or
system

effectiveTime duration temperature

heatchill Actively change the
temperature by
heating or chilling

subject vessel or
system

 temperature

dissolve Disperse a material
into a solvent

dissolved material

solvent

effectiveTime duration temperature

clean-vessel subject vessel or
system

precipitate Cause precipitation
by optionally adding
a reagent, then
changing
temperature and
stirring.

subject vessel or
system

 34 Chemical Reactions

 308

crystallize Crystallize dissolved
solid by ramping
temperature to given
temp over given
time.

purge Purge liquid by
bubbling gas through
it.

evacuate-
refill

Evacuate vessel and
refill with inert gas.

filter Filter a dispersion to
separate undissolved
particles from liquid

wash-solid Wash solid by
adding solvent and
filtering.

dry Allow remaining
liquid to evaporate
from solid

separate Separate a
dispersion by mixing
two different
solvents, typically
polar/aqueous and
aliphatic (e.g.
chloroform) and then
allow to separate in
two phases, the
product will end up in
one of the two
phases.

evaporate Allow or promote
solvent to evaporate
bringing dissolved
substance into solid
phase.

 temperature

pressure
(negative)

lyophilize Freeze dry under
negative pressure.

distill Evaporate a liquid
phase with lower
evaporation
temperature from
other liquid with
higher evaporation
temperature.

irradiate Expose to radiation. dosis, wavelength

